If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9u^2+8u-1=0
a = 9; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·9·(-1)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-10}{2*9}=\frac{-18}{18} =-1 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+10}{2*9}=\frac{2}{18} =1/9 $
| x/3+x/8=7/2 | | 4-2x=-3x+3 | | 52-8r=4 | | 7x+3x+2=8x-8 | | 14x=4=180 | | (7x-7)+103=180 | | 8x-2=6x-10x+22 | | -4(-5)+y=8 | | 4^(x-3)=7 | | 6x+3-5x=4x+21 | | 19m−15m−3=17 | | 99-11w=-88 | | 4-4x+2x2x=-3x+3 | | -2x+0=10 | | (2x-1)-4x=-116 | | -11x+13x=-8 | | 4-4x+2=-3x+3 | | 17x-9x-4x=16 | | 5b=3+6b | | 4+5*(7^x)=16+2*(7^x) | | -15=-7+6y | | 21+y=6 | | 3x-5(x-3)=-6+3x+1 | | -385=7(1-8m) | | -5t+9=14 | | 2v+4=-2v | | x^2=213 | | -9m+6=-7m | | 2x+2x-10=30 | | 2^(32-x)=128 | | 55=11a-88 | | -41+13x=x-6(4-3x)+7 |